Join Our Network of
124 000 Architects
JOIN NOW/SIGN IN

WINNERS OF THE EUROPEAN ARCHITECTURE AWARDS 2nd EDITION!


As previously announced we have the pleasure on this first day of September to announce the 21 shortlisted projects (3 in each category). Please note that the shortlisted projects have been published in random order.
The second edition of the European Architecture Awards was an outstanding success both in terms of number of entries (517!) and for the high-quality of the projects which made the work of the jury members very challenging and rewarding.
The 2020 pandemic has unfortunately made impossible the organisation of numerous planned events and social distancing has become and still will be in the months to come the general conduct: the European Architecture Awards are no exception to the rule therefore there will be no public awarding ceremony.
Winners will be personally contacted and their project will benefit from a major press dissemination and will also be published in the next issue of our Archi-News Printed magazine which will be printed and made available in November 2020.
Please discover below the list of the winning architects/projects and this in 7 categories:


read article.

News archive ...

September 11, 2020    Winners of the 2020 European Architecture Awards!

Read more

August 31, 2020    The garden house in the city, Nicosia, Cyprus

Read more

August 12, 2020    Aqua Health Clinic, Beijing, China

Read more

August 5, 2020    Venice Beach Home and Oxnard Beach House by MONTALBA ARCHITECTS

Read more

August 5, 2020    Private house, Senja, Norway

Read more

August 1, 2020    Fauna Restaurant Barcelona, Spain

Read more

July 31, 2020    Alonso’s house. Renovation of a small house in Zaragoza

Read more

July 8, 2020    Portland Residence Mont-Royal

Read more

July 8, 2020    Chybik & Kristof Architects win the competition for the construction of the Jihlava Multipurpose Arena in the Czech Republic

Read more

July 1, 2020    Fog harnessing spa and water irrigation plant Ilam, Nepal

Read more

Fog harnessing spa and water irrigation plant, Ilam, Nepal

Margot Krasojević Architects

Climate-smart agriculture water Irrigation Plant.

Greater London, United Kingdom, 2020-06-30 –

Photo credit: Margot Krasojević

The present design is for a water irrigation reservoir and spa located in the Ilam district, Eastern Nepal, a large agricultural area home to many tea plantations and stunning landscapes.

Photo credit: Margot Krasojević

The brief required the outdoor spa and wellness platform and water irrigation plant to reflect the nature of its environment. As Nepal, located at a subtropical latitude is known to host different climates at different altitudes, with areas of high humidity which leads to fog formation, as is the case with the Ilam district. There are also many hydrotherapy health retreats in this area. These factors further defined the brief which resulted in proposing a fog net water harnessing structure to conserve the natural environment. This was to be realized through design, program, spatial planning, and architecture.

The project located in Eastern Nepal will be able to produce 3–5 thousand litres of filtered water a day on average.

Photo credit: Margot Krasojević

The water distribution network consists of solar pumps, pipes, valves, and a node-set of reservoirs and pipe intersections. This network connects the suspended polypropylene fog nets to the filters, reservoir, and pools. A dense cross-section of fog nets are draped over a series of cradles embedded into the site’s ledge, its centre of gravity wedged into the site’s rock substrate. Striated canopies stretch over the nets and pipes integrating habitable space with industrial engineered building elements that harness water from fog. The scheme incorporates a water distribution plant.

The practice of collecting condensation or dew is an ancient tradition, for example, plant stems such as stipagrostis sabulicola catch droplets of moisture which are collected each day, this is still exercised by survivalists and currently used in natural irrigation in the Namib desert.

Photo credit: Margot Krasojević

The Inca people also took advantage of this natural phenomenon. They used buckets as reservoirs to collect the dew and condensation from underneath trees. Dew ponds in Southern England, stone piles in Ukraine, and volcanic stones in Lanzarote have all been used to trap fog and dew to harness water.

The fog water collector spa has three main parts: the building frame, a cradle embedded within the landscape supporting the suspended fog nets (the Polypropylene net infrastructure has differing densities along the section of the building mimicking the ground level changes by vertically extruding the landscape beneath it), and the basins which collect the filtered fog water. They together form the spa pool and larger reservoir for irrigation and supply of drinking water.

Photo credit: Margot Krasojević

The fog nets are woven using a Raschel mesh. This weave captures most water droplets depending on the wind direction, as the nets are erected on ridgelines to interrupt moving fog carried by the wind to have the maximum efficiency. Fog, composed of millions of droplets of water, is obstructed by the mesh and trickles down into the collection trough, funnelled through the pipe network to be stored in the spa and field irrigation pools.

The fog nets are cleaned to remove toxic mold and micro-organisms using an electrical current to loosen and dislodge airborne contaminants such as birds, dust, and other pollutants. Another concern was determining the location of the project to provide optimum conditions for a better harvest. As yields are affected by global as well as local weather fluctuations, it was important to work within a site with maximum efficient output.

The nets are hung in sections to allow adaptation and rebuilding on other sites, making it easier to accommodate the landscapes natural contours. The scheme wraps itself around the pools and reservoir, designed to allow water to flow through filters and sections before it can fill the spa and irrigation pools for tea plantations.

The striated structural frame lends itself to the site, terracing itself into its surrounding, using the nature and technique of water irrigation as a method of channelling water through the scheme into the cantilevered pools that surround the site.

The building is cantilevered from the site’s ledge. The centre of the nets’ gravity hovers, partly supported by the pool beneath it as inflatable elements are intertwined within its sections.

Whilst the bulk of the scheme is cradled, pivoting in the direction of the wind to achieve an efficient water harvest, the rest sways slightly for the condensation to drip down the net surface and into the troughs and water pipe network, which collect the harvested fog water. The fog water is collected by three pools, one inside the scheme anchors it to the site, whilst the other two supply the spa, field irrigation, and drinking water pumps.

Photo credit: Margot Krasojević

Harnessed fog water is collected in troughs, which lead to increasing pressure within spa chamber. This, along with the solar pumps, pushes fog water through the water pipe network. The water flows through the filters and the entire scheme, finally collecting in the spa pool and water irrigation reservoir.

Even though high altitude lowers the air pressure for the water pump, in the present case, the water pressure gradient remains high as it is close to the source, This phenomenon acts as an auxiliary to the solar pumps to effectively facilitate the flow of the harnessed water around the structure’s network and into the reservoir or spa area.

About Margot Krasojević

Margot Krasojević completed her architectural education at the Architectural Association School of Architecture and University College London. She worked with Zaha Hadid Architects and was lead undergraduate and masters studio director, investigating digital and sustainable design programs, at UCL, University of Greenwich and University of Washington. She then opened a multidisciplinary architectural design studio focusing on integrating environmental issues, renewable energy and sustainability as part of the design process.

Ms. Krasojević Ph.D,is currently working on projects in Asia, where she is integrating and harnessing renewable energy as part of a building’s service infrastructure. She is also designing hydroelectric homes and hotels which redefine the manner in which not only tourism but everyday rituals are affected and is investigating hempcrete as a sustainable and carbon-negative building material in her recent project for Catalonia’s Cannabis agricultural farm design. She is the author of “Dynamics and Derealisation” and “Spatial Pathologies-Floating Realities” and is a visiting professor at the University of Washington.

Ms. Krasojević Ph.D, believes that a cross-disciplinary design strategy is very important for architecture proposing new typologies that reflect our perpetually changing environment. She focuses on design criteria which involve renewable energy sources and technology to develop a formal and structural architectural language supported by dynamic simulation software.

Ms. Krasojević won the 2018 LEAF Award for “Best Future Building – Under Construction and Drawing Board” for her “Self-Excavation Hurricane House” in Louisiana, US.

Ms. Krasojević’s `Hydroelectric House’ design is a permanent

exhibit at The Futurium, Berlin, opening 5th September 2019.

The Turbine hotel is part of a television documentary by RAUM Films, Austria.

Dr. Krasojevic was nominated for the Energy Globe awards 2020

Anchorage Smithsonian Museum, Lead presenter design week October 2020

Smart agricultural design projects and renewable energy architectural design projects exhibited at the Design Museum, London

www.margotkrasojevic.org